Improved Green’s function measurement for hybridization expansion quantum Monte Carlo

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved estimators for the self-energy and vertex function in hybridization-expansion continuous-time quantum Monte Carlo simulations

We propose efficient measurement procedures for the self-energy and vertex function of the Anderson impurity model within the hybridization expansion continuous-time quantum Monte Carlo algorithm. The method is based on the measurement of higher-order correlation functions related to the quantities being sought through the equation of motion, a technique previously introduced in the numerical r...

متن کامل

Lazy skip-lists: An algorithm for fast hybridization-expansion quantum Monte Carlo

The solution of a generalized impurity model lies at the heart of electronic structure calculations with dynamical mean field theory. In the strongly correlated regime, the method of choice for solving the impurity model is the hybridization-expansion continuous-time quantum Monte Carlo (CT-HYB). Enhancements to the CT-HYB algorithm are critical for bringing new physical regimes within reach of...

متن کامل

Stochastic Series Expansion Quantum Monte Carlo

This Chapter outlines the fundamental construction of the Stochastic Series Expansion, a highly efficient and easily implementable quantum Monte Carlo method for quantum lattice models. Originally devised as a finite-temperature simulation based on a Taylor expansion of the partition function, the method has recently been recast in the formalism of a zero-temperature projector method, where a l...

متن کامل

Quantum energy density: Improved efficiency for quantum Monte Carlo calculations

Jaron T. Krogel,1 Min Yu,2 Jeongnim Kim,3 and David M. Ceperley1 1Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA 2Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 3Materials Science and Technology Division and Computational Chemistry and Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennesse...

متن کامل

Improved Monte-Carlo Search

Monte-Carlo search has been successful in many non-deterministic games, and recently in deterministic games with high branching factor. One of the drawbacks of the current approaches is that even if the iterative process would last for a very long time, the selected move does not necessarily converge to a game-theoretic optimal one. In this paper we introduce a new algorithm, UCT, which extends...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Physics Communications

سال: 2013

ISSN: 0010-4655

DOI: 10.1016/j.cpc.2013.04.005